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EQUATIONS

Two Fluid:
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Neoclassical Closure:*

Πs ≅ Πs||
= b̂b̂ − 1
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*F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239
(1976).



Particle ‘closure’:

The distribution function is split into drifting Maxwellian
and perturbed parts.
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The evolution of the Maxwellian along a characteristic is
determined by:
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where wj=vj-vs, and vj is the velocity of the j-th particle,
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The traceless stress tensor and heat flux are determined
by:
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where σ is a normalization such that
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NUMERICAL ALGORITHM

Temporal Discretization:

• Developed by D. Barnes, R. Nebel and D. Nystrom
• Used in PIC3D, TPCN and DMOM

(finite difference)
• Abbreviated flowchart->



Main time-step advance

Abbreviated NIMROD Physics Algorithm Flowchart

Read and interpret grid information, initial conditions 
and physical parameters from pre-processor file

Predict magnetic field from old electric field

Predictor/corrector loop

Advance electron and ion momenta with explicit forces

Construct rhs of implicit electric field equation.

Iteratively solve implicit electric field equation

Update electron and ion momenta with new electric field

Advance density

Advance pressure for each species

p/c iterations complete?
no

yes

Update magnetic field with new electric field

yes
Evolution complete?

no Write output
file for post-
processor



At present, we advance the cold, collisionless fluid
equations.
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where fΩ is a numerical time-centering parameter.

This leads to Js
n+1 = f E( ):

Js
n+1 = 1− 1

fΩ






Js

n + Rs ⋅ 1
fΩ

Js
n +

∆tnsqs
2

ms
E











where Rs =
I + rsrs − rs × I

1+ rs
2  and rs =

fΩqs∆t
ms

B .

Combining the species:

∆t
ε0

Jn+1 = ∆t
ε0

1− 1
fΩ






Jn + Rs ⋅ ∆t

ε0fΩ
Js

n

s
∑ + S ⋅E

where S = ωs∆t( )2Rs
s
∑  .



In NIMROD, the algorithm was first implemented in the
low-frequency (large ∆t) limit, where 1<<ri<<re and

S → ωe∆t( )2 b̂b̂ + c2
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where M is the total momentum density.

We now have a run-time option to switch between 2-fluid
and ‘MHD.’

Combining the species equations with Ampere’s law,
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which is solved implicitly.



Thus, the present version of NIMROD advances the
following set of equations:

A+ = An − ∆t
2
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In the large ∆t limit, with B fixed and A and M ~eik·x, the
numerical dispersion relation is
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The compressional wave comes from the first factor:

λ = 1± ikvA∆t
1± ifΩkvA∆t

1+ fΩkvA∆t( )2
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 , so that for 1/2≤fΩ≤1,

|λ|≤1 for any ∆t.



Spatial Discretization:

• Finite elements
• Block decomposition into

-> structured blocks of logically rectangular cells
-> unstructured regions of triangular cells
-> sample tokamak grids

• Splined quantities are ‘scaled’ tensor components; for
example, consider Ampere’s law (α’s are linear spline
functions and g’s are metric elements):

µ0 J i( )( )
a

J αaαb dxdy∫
b
∑ =

−εijkεmnp A p( )( )
b

gkm
J

∂ αagii
1 2( )

∂xj

∂ αbgpp
1 2( )

∂xn dxdy∫
b
∑

where J i( ) = gii( )1 2 Ji is a ‘scaled contravariant’ or physical

component and A p( ) = gpp( )−1 2
Ap is a ‘scaled covariant.’

-> separates parallel and perpendicular directions on 
field-aligned grids

-> preserves operator symmetry
-> avoids distortions due to nonuniform grid, which 

were encountered with ‘straight’ tensor 
representations



When spatial discretization is added to the numerical
dispersion relation, we find terms which represent errors
due to the finite element formulation.

Assume:  k = kxx̂ + kyŷ , B = Byŷ + Bzẑ
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Κ j = 2 1− cos k j∆j( )[ ] ↔ k j∆j( )2
κ j = sin k j∆j( ) ↔ k j∆j
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